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Abstract: In this paper, we introduce Chlodowsky type modification of (p, q) —Bernstein Durrmeyer operators and analyze some
of its approximation properties. Here, we apply the concept of (p, q) —Beta and Gamma functions, to estimate the moments of
these operators. Then, we establish the convergence of the operators via well known Korovkin’s type theorem. In the end, we
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. INTRODUCTION

Approximation theory has an important role in mathematical research. It has a great potential and scope of applications. In 1950,
With the famous Korovkin’s theorem came into the study, the positive linear operators has been the center of research in
approximation theory. Some of the well known operators such as Bernstein, Szasz, Chlodowsky, Baskakov and their generalized
forms were introduced. Then the study of g —calculus came into the existence. In 1987, Lupas [2] introduced the g —analogue of
Bernstein polynomials which has better approximation properties than the classical one, for a convenient choice of g. For more
details on g —generalizations of Bernstein operators, one may refer [1].

In recent years, the concept of (p,q) —calculus was introduced and has become an active area of research. Some of the

recent developments in (p, q) —calculus are presented in articles [4, 5, 6, 8, 10]. Before describing the present article , we recall
some basic definitions and results.

The (p,q)-number is defined as

- p—q
which can also be written as

n],q = p"‘l[n]q/p,n =0,123.....
By putting p =1 in the definition of (p,q) —integers, we get q —integers as a particular case of (p,q) —integers.Thus
(p, q) —integers are the extension of g-integers.

The (p, q) —factorial is defined as

n
[(]pq! = I—[ [klpqn =1,[0],,4' = 1.
k=1

The (p, q) —binomial coefficient is defined as

n [0
= ,0<k<n.
(k)p.q [n = Klpo! eao'!
The (p, q) —power basis is given by
(x —a)p, = (x —a)(px — qa)(p*x — q*a).......... " x — g ta).
Let f be an arbitrary function and ¢ be a real number, then (p, q) —integral of f(x) on [0, c] is defined as

‘ p* . P P
[ 1@ty = @ -pez, I rdo.nB i <a
d 0 q q q
an

‘ q« . 4" P
| F@dpex =0 - D30tz Fopz 07121 > 1.
0 p p q

The (p, q) —Gamma function is defined as
-p "

Thant1) = ®-q

=[n]p, ! 0<qg<p=<1

and n is a non negative integer.
The (p, q) —Beta function of first kind is defined as follows:
letm,neNand0 <q <p <1then
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B f(le@ P@Od,  x.

The (p, q) —generalization of the relation between beta and gamma function is given in [8] as follows:
[n(zm+n-2)+n-2] Fp,q (m) Fp,q n)
5 P4~ pav

,wherem,n € N,
L, q(m+mn)

B,q,(m,n) =p

From the above relation it can be easily seen that the (p, q) —analogue of beta function is not commutative.
The (p, g) —analogue of Bernstein operators for x € [0,1] and 0 < g < 1 is defined in [6] as

n k[k]
nMU@—Zb(1v<[hf)

n.dn n k(k—1 1)1/2
bPAn(1,x) = (k)p ) pleeDnE=DI/2 k(g _ yym-ke
and the moments of the (p, q) —Bernstein polynomials,estimated in[5], are as follows:

(i)Bn,p,q(lix) =1,
({D)Bppq(t;x) = x,
P" *[klpq

(ii0) By p g (t% %) = x* +
np.q [Mhe

In [3], Buyukyazici et al. have defined g —Bernstein Chlodowsky durrmeyer operators and investigated some approximation
properties for these operators.

Recently, Gupta et al.[8] have introduced the (p, q) —Bernstein Durrmeyer operators and studied many approximation
properties of these operators.

Inspired by these operators, here in the present article, we introduce (p, g) —Bernstein Chlodowsky Durrmeyer operators
and discuss some of its approximation properties.

Il. CONSTRUCTION OF THE OPERATOR
Let 0 < g, < p, <1 such that limp, = limg,, =1 and 0 < x < a,, where a,, is a sequence of positive real numbers
n—oo n—oo

where

such that lim a,, = o and lim,,_, , —2%— = 0
n-co Mlpn.an
The (p, g) —Bernstein basis function is defined as

nAn n k(k—1)-n(n-1)]/2
b2y = () o ) (= xfak

Now, we define (p, q) —Bernstein-Chlodowsky-Durrmeyer operators as follows:
n.dn [n+1nn -(n? —k?- n.4dn n n.4dn
DR (f,x0) = T PR TR T (1,5 [ 2 b P P ) Ol q, ¢ (31)
where
dn n it Ao
D @ putn) = () CEYPn ~ a1 )™

Lemma 1 For the above defined sequence of operators {D}™}, We have

()PP (1, x) = 1 (3.2)
[n] x
Dpn An t, — phan + AnlMipn.qn 3.3
(ll) ( x) [n+2]pn Qn [n+2]pn'4n ( )
[2] af, (2G4 +anpp)n] XAn
Dpann tz, — pn Pndn Pn.dn
(lll) n ( x) [n+2]PnJZn [n+3]17n'11n [n+2]pn'Qn[n+3]pn'Qn
n tﬁl[n]pn.qn(xz["]pn.qn*'p?q_lx(“n‘x)_ (3.4)

[n+2]Pn'11n [n+3]PnJZn

Proof. We shall apply the concepts of (p, q)-Beta and Gamma function to obtain the proof as follows:
(l)Dpn An (1 ) ["+10]l:n.4n 7(1 o p;(n2+3n—k2—k)/2 bpn An (1 )

ﬁmmme%)%m

_ [""'101:11!111 Zn_o p;(" +3n-k%- k)/prn qn(l )

tn fy B2 (D PGt iy g

_ 2
= [0+ Uy, Zheg P I (1, 2

1 n -
ft:o (k)pn n (pnu) (pn - pnqnu)n kdpn P

- 3n-k?-k)/2 ;. Pn.an
= [0+ Uy, Zieo ™ T A ()

By a,(k+1Ln—k+1)

_ 2
= [0+ Upyyg, Thco P P (1, 5
[M]'pn.an (m2+3n-k%-k)/2 [Kl'pp.gn [ —*'pran
K'ppan n=kllppgn " M+ 1'pn.qn
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-(n?+3n-k2-k)/2
k oD n(n n-— )/ anQn(l )

=1 (3.5)
Again, We have

_ 2
(ii)Dpann(t x) — [n+1i:nﬂn ;{1 0 pn(n +3n-k k)/szn qn(l )

S DR (D, D = tdp, gt

_ [M+1]ppn.an Zn p—(n +3n—-k%- k)/szn n (1 )

an k=0 Fn
bann( ) d
an Pny Pnqn)u Pn.dn
_ 2
[n+1]pnqna Zk o (n +3n-k k)/prnqn(1 )

Pn
_ n
pn t=0 (k)pn. (pnu)k+1(pn - pnqnu) pn qnu

3n—k?%-k)/2 1 Pn.Gn
[TI.+ 1]anna Zk 0 pn(n e )/ bp 1 (1 )(k)
P Bppan (K +2,n—k +1)

Pndn

_ 2
[n+1]pnqna Zk o Pn (n?+3n-k k)/sznqn(1 )

[M'pn.an (m2+5n-k?-3k)/2 [k+1]'pp qn [0 k]|Pn an
Kl'pnan n=kllppgn " fest) (n+2]'pp.qn
=« bpn An 1 n k Pn.dn
n Z ( [n+2]Pn an
(pn‘HJn[k] )
=a, bpn An 1 n k MnTAnttpn.dn’
Zic= ( +2]pp.qn

—Hi g b"”q”(l )

[n+2 Pn.dn
In[Mpp.an%n Pnq x|\ Pn_ [k]Pn an
o b (1,
[m+2]pp.an (Z ™ ( n) (Mpn.an
Using the definition of (p, g) —Bernstein operators, we obtain

Dan‘ln(t x) — PRan In[Mpnr.gn%n x
n [n+2]Pn'Qn [n+2]Pn"Zn an
_ PRan+qn[Mlpy qn¥
[n+2]Pn'Qn

Now, following the proof [{], [ii] and using the identity

(3.6)

[k + 2]pq = P**1 +qp* + *[K]pq
we get
2n[2] ai (ah+anpn)n] XAn
iii DpnrQn tZ x) = Pn Pndn Pn.dn
( 2 n (2 ) [n+2]117n'Qn[n+3]PnJZn [n+2]PnV‘Zn[n+3]pnv‘Zn
A pr.gn X2 MppantPi  x(@n—X)
[n+2]Pn'Qn[n+3]Pn'Qn

N 3.7)

111. CONVERGENCE OF THE OPERATORS

In this section, we shall obtain the convergence of the proposed sequence operators using well known Korovkin’s theorem.
Theorem 1 If a be a sufficiently large fixed positive real number then for all f € [0, a],

Lim ||D" " (f; %) = £ (@)l cjo.q) = 0.
where ||.]| is the superemum norm.

Proof. From (3.2)-(3.4) and following [3], we observe that
IIDR™ " (1;%) = llcpoa) = O,

Putn (s oy _ —n
D2 (652) = *llctoa) < g
and
2
pPndn tZ;x — x2 < 2an + 4qa an .
|| I ( ) “C[O,a] ["]%:n.qn (Mlpn.an

Then, the proof is completed by applying a Korovkin-type theorem.

Lemma 2 Letn > 3 be a given natural number and let 0 < g, < p, < 1,9, = qo(n) € (0, p,,) be the least number
such that
2n+1

PRty —pr et + pi e —ontan Y + it an — phantt — 2pR + 2prantt >0 (3.8)
Then, for every q,, € (qo, 1).

DI (¢ = 0%, ) < prrrt— (4200 +
where ¢%(x) = x(a, — x),x € [0,a,].

)

n+3]p
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Proof. In view of Lemma-1, we obtain
Pndn _ 2 — 2 1 3 -1
Dn ((t x) 4 x) =X [n+2]pn.qn [n+3]Pn.qn (qn [n]pn,qn([n]pn,qn Dn )

_an [n]pann [TL + 3]anQn + [n + Z]anqn [Tl + 3]Pn;qn)
+anxP%_IQn(Pn+Qn)2[n]pn,qn—ZP%[n‘*?’]pn,qn
[n+2]17nﬂn [n+3]pnﬂn
+a 2 pa™(Pn+an) 3.9
[n+2]17n Qn[n+3]17n an ( )
by using the definition of the (p, g) —numbers, we have

prrll_lqn(pn + qn)2 [n]pn qn Zprrll [Tl + 3]pn,qn = pn qn(pn + qn)z M
pRt3—qitt?
pn o (p2n+1 p1111+1qn+1 + p2n 1%3{
—prtant? + pitah —prantt — 2p
+2prqn*®) >0, (3.11)
for every q,, € (qo,1).
furthermore,

prrll_lqn(pn + qn)z[n]pn,qn - 2p1111 [TL r 3]pn,qn < 2[7’1 + 3]pn,qn
and following [8], we have
prrll_chn (pn + qn)2 [n]pn,qn - 2p1111 [Tl + 3]pn,qn + qg [n]pn,qn([n]pn,qn - prrll_l)
—2qu[nlp, g, [n+3lpq, T [0+ 2]y, 0,0+ 3y,
= PR qn(@n + 002 [Mpyq, — 2P0 (p,’%+2 + qnpp*t
+q121p1111 + qr?{ [n]pn,qn) + q% [n]pn,qn 1 qnpn 1)[ ]pn,qn
—qn[Mppan PRT2 + @pn ™t + @i + @5 [ 00)
+r*t + qupn +q [n]pn qn)
@r*? + qupr*t + @ipn + anlnlp,g,) < 0. 3.12)
Therefore, for x € [0. ], we have
PR (0 + Gn)
[+ 210, [ + 3lpran

x(a, —x)

DEMIR((t — x)2, %) = @

PR qn(Pn+an)? [Mpr.gn =207 [M+3]pp.an
[n+2]pp.qn[n+3lpnan

n-—1 2
M+2]p . an M+ 3pran (Pr™" G (0 + 4n)" [y, 00

_2p7711 [Tl + 3]pn,qn + qz [n]pn,qn([n]pn,qn - prrll_l)
—=2qu [Nl g, [N+ 3lppgn + [0+ 2]y, 4, [0+ 315, 0,07

+

2[n+3lp,.qn (i) ( ) 2a3
[n+2]Pn Qn[n+3]Pn qn [n+2] Pn Qn[n+3]1’n an
1
S @20+ ) (3.13)

which was required.

IV. RATE OF CONVERGENCE
We denote W2 = {g € C[0,»): g’,g"" € C[0,0)}, for § > 0, K-functional is defined as
K8 =inf{lf —gll+nllg"ll:lgew?

Where norm ||. || denotes the uniform norm on C[0, c0). Following the well-known inequality given in DeVore

and Lorentz[7], there exists an absolute constant C > 0 such that
Ky (f,8) < Cwy (f, V&)

Where, the second order modulus of continuity for f € C[0, o) is defined as

W (f, V&) = sup_ sup |f(x+h)—f(x)

0<h<sy&xX+h€[0,an]

The usual modulus of continuity for f € C[0, o) is defined as

w(f,8)= sup_sup [f(x+h)—f(0)
. 0<h<sV8xx+he[0,an]
Now, we have the following theorem:

Theorem 2 Let n > 3 be a given natural number and let 0 < q,, < p, < 1,49, = qo(n) € (0,p,)be defined as in Lemma-2. Then
there exists an absolute constant € > 0 such that

| D2 (f; x) f(x)l < Cop(Fu[n 420,20, 5,09) + o0 (f,—2),

n+2]pn.‘ln

where f € C[0, a,], 62 (x) = ¢p?(x) + ,x € [0,a,] and q € (q0,1).

[n+3]p Aan

Proof. For f € C[0, a,,], we define
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DY (f; ) = DR () + fx) — f (Hetitonan ) (4.1)
[(n+2lpp.qn
Then, by Lemma-2, we immediately get
DI (1;x) = DIV (1;x) = 1 (4.2)
and
DZmn (t; x) = DIV (65 %) + x — (—”"“E‘niqz’ij";:q"") = x. (4.3)

By Taylor’s formula
! t n
g =g®) + (- 0g' ) + [ (t —wg"Wduy,
we have
Dy (g; x) = g(x) + Dy (fxt (t —w)g" (wdu; x) (4.4)

= g(x) + DI (f1 (t — w)g" (W du; x)

pRan+qnnlpy.qnx n
—f, (Pt ) gy
x [n+2]Pn'qn

Thus
- t "
D2 (g; %) — g (x)| < Drzlrn.qn“fx [t —ullg" (w)|dul; x]

pRantan(nlpyan®

nan+
Hf, enan |W—ul lg" (w)|dul
n4n

< DI ((t —x)% 019"l
PR An+An[Mpy.qnX 201 11
PrantdnMpnan® _ 4.5
gy, )21lg" I (4.5)
Also, we have

2
Dpn Qn((t _ x)z x) + (pn“n"'Qn[ Ipn.an* _ X)

[n+2]Pn qn
<—
[n+2]pn‘m <¢ ( )+ n+3]PnQn)
2
+ (pnan ([n+2]p,,qn—anln ]pn,qn)> . (46)
[n+2]Pn'Qn
further, it can be easily seen that
1<[n+2],, 4.~ nMlp,q, < 2. 4.7)

Now, using (4.7), we have

2
p';’llan_([n+2]pn,qn_Qn[n]pn,qn)) 52
( [n+2]17n qn n (x)

W{p%na% B 2p}}([n + Z]pn,qn —qn [n]pn,qn) xXay,

L 2,2y ___ Monan
([ + g, = G0} B,
PP ad-2pfxan+4x®  [Mlpran 1
[m+2]pp.an y [(n+2]pn.qn ' [n]pn'an(‘xn_x)+a7zl,
X X
pzn—ZPﬁ(aﬁ‘*(a)z 1
M+ 2lpngn MlppanGA-GHY
3
- [n+2]17n'11n.
forneNand0 < g, < p, < 1. Now, using (4.6) and (4.8), for x € [0, a;,) we have

(4.8)

Dgann ((t _ ) X) + (pnann++q2n][ Ipn.an* _ x)z
Pn.dn

—62(x) (4.9)
[n+2]pn qn
Using (4.5) with the conditionn > 3 and x € [0, a;,), we obtain
D7 (g;2) = 90O < b — 8 W)lg "GOl (4.10)

Furthermore, for f € C[0, ) we have || D™ q”(f,x)|| < If1l,
Therefore,

APnAn ndn pran+qn(n] n.qn*X
DR (01 < 1D (0] + 1 (o) + | (R taltonan)

[n+2]pn-4n
< 3|Ifl|, forall f € C[0,). (4.12)
Again, for f € C[0,) and g € W2, we have
1D (f; ) = f ()]

= [P - po0 + (Bt iatonant)  py)|

n+2]pn qn

< DR (f — g; 0| + D™ (g %) — g ()| + |g(x) = f ()]
|f (Pnan+Qn[n]pn qn > f(X)|

[n+2] Pndn
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5 n
<4lf —4ll +—q-5ﬁ(x)-||g I

[n+2]p,,
pran=([n+2lpp,gn=anMlpn,qn)* |>
e (f' [M+2]pn.qn
1 an—x
U =gl g — 6@ Mlg"ID + @ (f.—[n+2’§p p )
n.dn n4n

(using(4.10) and (4.11)).
Now, taking the infimum on the right hand side over all g € W2, we obtain

|DE I (f;0 = £ < 5K, (f— 5%("))

[n+2]pn-Qn
a, —x
‘tw | f,—————
<f [n+ 2]pn1qn)

D (f320) = OO < Co(f, [+ 21,2, - 6200) + o (f, =22 )

(n+2]pp.qn

Finally, we have

which is the required result.
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